尊龙凯时(中国)人生就是搏!

中文EN0531-82721303/13911164590/18678878719
NEWS CENTER新闻动态
公司新闻行业新闻党建领航公示公告法律法规
位置:首页-行业新闻-新闻详情

矽卡岩型铁矿的形成条件和赋存规律

2024-01-172062次浏览

1矽卡岩简介

1.1矽卡岩的分布

产在火成岩体(主要为中性火成岩及酸性火成岩)与碳酸盐岩系(主要是石灰岩)及火山-沉积岩系接触带及其附近的一种接触交代变质岩。其名称来源于硅(旧名矽,为Si音译)和钙(卡为Ca音译)的综合。

主要矿物成分有石榴子石、辉石、透辉石、绿帘石,其次为硅灰石、电气石、阳起石、绿泥石、石英等。这类岩石是寻找寻矽卡岩矿床的重要标志,与它有关的矿产主要有铁、铜、铅、锌、钨、锡、铍、硼等。

1.2形成机理

柯尔仁斯基于1945、1947、1948、1955年提出了矽卡岩化作用的接触反应交代新理论。根据这一理论,矽卡岩的生成是由于两种化学性质不平衡的介质——碳酸盐岩石和铝硅酸盐岩石在高温岩浆期后溶液作用下,通过接触反应交代而生成。在这里扩散作用(双交代作用)起主导作用,当溶液沿着碳酸盐岩石和铝硅酸盐岩石接触带运移时,发生了钙向铝硅酸盐岩石方向扩散,而SiO2和Al2O3向碳酸盐岩石方向扩散,于是这两种岩石就发生交代,形成某些反应矽卡岩带。另一种类型是接触渗滤矽卡岩。它也发生在碳酸盐岩石和铝硅酸盐岩石的接触带,是由于组分被溶液单方向搬运(渗滤)的结果。

2矽卡岩矿床

从岩浆中分泌出来的气体和热水溶液与易起化学反应的围岩发生接触交代而形成的矿床,故又称接触交代矿床。

2.1基本特征

1、矿床主要产生于酸性侵入体(花岗岩、花岗闪长岩等)与石灰岩或白云岩的接触地带(该地带通常形成矽卡岩)。这是因为交代作用与围岩的化学活泼性有关,而石灰岩、白云岩等比砂岩、页岩的性质活泼得多。

2、当含矿挥发气体和热水溶液在高温条件下与石灰岩接触时,发生化学反应,形成有用的矿床。

3、围岩产生显著的矽卡岩化现象,所以矽卡岩是寻找这类矿床的重要标志。

4、与此相关的矿产多为金属矿产,如铁、铜、锡、锌、钨、钼、铍等。此外还有水晶、硼矿。

在我国著名的矽卡岩矿床有大冶铁矿、个旧铜锡矿。在马来西亚主要矽卡岩矿床有丁加奴州的武吉伯西铁矿、柔佛州的佩莱卡南铁矿。

2.2矽卡岩矿床的分类

按形成矽卡岩的原岩成分可分为两类:

1、钙矽卡岩型矿床

钙矽卡岩型系交代石灰岩而形成,它是矽卡岩矿床中分布最广的一种类型。与之有关的矿床有铁、铜、铅、锌、钨、锡、钼等金属矿床。

2、镁矽卡岩型矿床

镁矽卡岩型系交代白云岩或白云质灰岩而形成,分布不广。与之有关的矿床除铁、铜金属矿床外,还有非金属矿床,如硼、金云母、石棉等。

2.3矽卡岩型铁矿床

1、地质构造背景

有利成矿的大地构造位置是不同地质时期的大陆边缘弧及岛弧、大陆边缘隆起中的凹陷带和与之相邻的坳陷带及裂谷。该类矿床形成于中、浅成侵入体与碳酸盐岩、钙质凝灰岩及钙质页岩等化学性质活泼的围岩接触带及其附近。与成矿有关的岩体可为辉长岩及辉绿岩、闪长岩及二长岩、石英闪长岩及石英二长岩、花岗闪长岩及花岗岩,一般富碱质(多富Na2O)或偏碱性,规模多属中-小型。成矿深度一般在1-4.5km,蚀变及矿化的温度一般在800-200℃,主要矿化温度在500-400℃。

2、矿体特征

矿体呈似层状、凸镜状、囊状、不规则状产于接触带的矽卡岩中,主要受接触带、断裂及层间破碎带、捕虏体等构造控制,与围岩多呈渐变关系。

矿石矿物以磁铁矿为主,可见赤铁矿、菱铁矿、镜铁矿、磁黄铁矿、黄铁矿、黄铜矿、锡石、闪锌矿、方铅矿等。脉石矿物为矽卡岩矿物组合,如石榴石、透辉石及钙铁辉石、方柱石、钠长石等,因矿床和矽卡岩类型而异。

矿石具交代结构、交代残余结构、它形-半自形粒状结构,浸染状、条带状、斑杂状、角砾状、致密块状等构造。

围岩矽卡岩化普遍,且常具有一定的分带性,分带情况因矿床而异、蚀变最强烈的部位多在正接触带。

3、成矿作用模式

矽卡岩型铁矿虽不排除部分矿床的铁来自岩体的围岩,但大多数矿床的铁质是岩浆热液带入的,岩体富钠及钠化蚀变作用有利于铁质进入热液。当岩体侵位于中、浅部位的碳酸岩盐等有利围岩冷凝结晶时,岩浆中的挥发组分开始向岩体的顶部及边部集中,在早期高温阶段(超临界状态)流体通过双交代或渗滤交代作用形成干矽卡岩;其后因温度降低沿接触带上升的接近临界状态的富铁流体与围岩(包括干矽卡岩)交代形成湿矽卡岩矿物组合及磁铁矿,即铁矿的主要形成阶段;在更晚阶段则形成伴生的赤铁矿、锡石等氧化物及铜、铅、锌的硫化物。

4形成条件和赋存规律

矽卡岩矿床是中酸性——中基性侵入岩类与碳酸岩类岩石的接触带上或其附近,由于含矿汽水溶液进行交代作用而形成的,在成因上和矽卡岩有一定联系的矿床。在该类矿床中一般都有典型的矽卡岩矿物组合(钙铝——钙铁榴石系列、透辉石——钙铁辉石系列),交代作用明显,矿床在空间上受接触带控制,故又称接触交代矿床。

4.1矽卡岩矿床的形成条件

1、岩浆岩条件

岩浆演化过程分出含矿溶液,是形成矽卡岩矿床的先决条件。而有利于形成矽卡岩矿床的岩浆岩,主要是中酸性岩浆。西安里矿区岩浆岩主要分布为不同期次侵入的角闪辉长岩类,闪长岩——二长闪长岩类,细粒闪长岩脉等,尤其是第二期侵入的闪长岩——二长闪长岩类岩浆岩,为该区的成矿作用提供了非常理想的母岩条件,和该区铁矿床的赋存有着紧密的联系。

2、围岩条件

围岩岩性是决定矽卡岩及矽卡岩矿床形成的重要条件,它不仅影响成矿物质的沉淀,同时也影响成矿作用方式、矿体规模及矽卡岩和矿石的物质成分。其中有利围岩主要是各种碳酸盐岩石,如石灰岩、大理岩、白云质灰岩、白云岩、泥灰岩、钙质页岩等。这些碳酸盐岩石化学性质活泼,容易分解,物理性质较脆,特别是硅化后更容易破裂,渗透性更强,有利于含矿溶液流通并被交代形成矽卡岩矿床。且一般情况下厚层的、成分单一的灰岩不利于成矿,而薄层的或成分不纯的碳酸盐岩石,如泥质灰岩、含燧石条带灰岩、白云质灰岩等对成矿较为有利。特别是物理性质差异较大的围岩地段,常常是富矿赋存的主要场所,因为这些物理性质不同的岩石之间有较为薄弱的界面,受构造作用时易沿层间破碎,便于含矿溶液的流通,因其化学成分的不同,更有利于发生交代作用,从而形成富矿。

矿区矿体围岩主要为中奥陶纪石灰岩、大理岩及泥灰岩等,这些围岩节理发育,裂隙较多,孔隙度也很大,这些围岩无论是化学成分还是物理性质等方面,都为铁矿溶液的流通和化学成矿交代作用创造了极为有利的条件,是该矿区铁矿床赋存的重要因素。

3、构造条件

构造控制含矿溶液的通道,也为成矿提供了有利的空间。我们知道,与矽卡岩矿床密切相关的岩浆岩(母岩)是沿地壳构造相对薄弱的构造带侵入的,而侵入体的形态、产状则受褶皱、断层、层间构造和地层岩性的控制。这就决定了矽卡岩矿床也要受到构造带的控制。具体的成矿构造主要有如下四个。

(1)侵入体与围岩的接触带构造。岩浆岩侵入体与围岩的接触带构造形态有较为平直的、波状的、港湾状的、锯齿状的等,按接触面上围岩和岩体的接触关系有平盖接触和超覆接触等,但归纳起来看,超覆接触、岩体的凹部等构造带极易形成矿体。

(2)围岩层理、层间破碎带及构造裂隙。在接触带附近的有利围岩中,层理发育而显著,特别是不同岩性之间的层理剥离、层间破碎带及构造裂隙等,对矽卡岩矿床形成具有特殊的意义。由于这些构造带的存在,不仅在接触带上,有时在远离侵入体的围岩中也能形成较大的矿体。

(3)褶皱构造。褶皱构造主要表现为对岩体及含矿溶液流通的控制。一般在褶皱轴面发生弯曲处、褶皱倾伏端及褶皱的凡方向和性质发生变化处,非常有利于岩浆岩的侵入和矿床的赋存,因此矽卡岩矿床常产于褶皱轴附近或翼部,在箱状背斜翼部具有平卧褶皱处、倾伏背斜的倾伏端、复式向斜的次一级背斜轴部及大断裂两侧所形成的牵引褶曲等部位都是矽卡岩卡矿床形成的有利部位。

(4)捕虏体构造。该类构造实质上是岩体内部石灰岩体等捕虏体的接触带构造,也是矽卡岩卡矿床成矿的有利部位。

4、温度、压力条件

尽管矽卡岩矿体形成的温度范围很广,但近年来通过大量矿物包裹体测温资料说明,接触交代矿床中的金属氧化物(如磁铁矿)形成的温度范围一般在350℃—600℃之间(主成矿温度在400—500℃);而矽卡岩矿床形成的压力与所在的深度有关,大多数情况下在中等深度和浅深条件下形成。

4.2矽卡岩矿床的成矿作用

矽卡岩矿床的形成条件和形成环境是多种多样的,矽卡岩矿床的形成作用主要有接触渗滤交代作用和接触扩散交代作用两种。

接触渗滤交代作用是含矿汽水溶液沿着被交代岩石的裂隙系统渗滤而引起的。在有裂隙横切部位,由于深部上升的含矿溶液沿着交切接触带的裂隙系统渗滤,将下层中的活性组分带到上层,并相互发生交代作用。由于溶液沿主要通道流动很快很远,所以下部交代作用明显,愈往上温度愈低,反应愈缓慢,在这种交代作用过程中,温度梯度和压力梯度是热流运移的原动力,故能够形成较大较厚的接触带。

接触扩散交代作用是含矿溶液在岩浆岩碳酸盐的接触面流动时,由于上升溶液的影响,破坏了原来已饱和溶液的平衡,使GaO向岩浆岩中扩散,而SiO2、Al2O3等向碳酸盐中扩散,从而在接触带上形成矽卡岩或矿床。但由于该种交代作用是由浓度梯度作为组分运移动力,故在该作用下不能形成较大较厚的接触带。

在实际交代作用过程中,这两种作用往往是相互伴随作用的。就整个矿床形成过程而言,大致可分为两个成矿期和五个成矿阶段:

1、矽卡岩期

(1)早期矽卡岩阶段(又称干矽卡岩阶段),该阶段主要形成矿物有硅灰石、透辉石、钙铁辉石、钙铝榴石、钙铁榴石等。

(2)晚期矽卡岩阶段(又称湿矽卡岩阶段),该阶段主要形成矿物有阳起石、透闪石、角闪石、绿帘石等。这个阶段由于温度逐渐降低,溶液中的铁,除部分参加硅酸盐矿物外,大量以磁铁矿形式出现,故又称磁铁矿阶段。

上述反应是不稳定的可逆反应,因为在反应中生成的盐酸对生成的铁有溶解作用,为使该反应向生成磁铁矿的方向进行,就必须具有中和盐酸的条件,而接触带上石灰岩正好可以起到中和作用,促进磁铁矿的形成。

(3)氧化物阶段

2、石英-硫化物期

(4)早期硫化物阶段。

(5)早期硫化物阶段。

4.3矿床的赋存地段

由以上分析可以看出,矽卡岩铁矿的赋存地段主要决定于接触交代作用和构造作用。

1、接触交代作用决定矿床的赋存地段

当岩浆岩侵入到围岩中时,接触变质作用产生了热晕圈,在泥灰岩中形成了钙-铝-硅酸盐矿物,在此阶段,除H2O、CO2等挥发性组分外,没有非挥发性组分的带进带出,也就是说在此阶段基本不会生成矿石。随着温度的降低。岩浆岩的结晶作用开始进行,水热流体逐步析出,并引起侵入体的水裂作用。这些流体与变质水或天水混合,沿接触带上升,在围岩中渗滤,溶液沿通路的活动梯度导致早期的无水矽卡岩矿物的带状分布,并在较强氧化状态下形成富高价的铁的矿物,在较弱氧化状态下形成富低价的铁的矿物,但硫化物矿物很少见。在矽卡岩矿物生成的中期阶段磁铁矿和硫化物开始沉淀,但数量不多。在晚期阶段,随着矽卡岩的破坏分解,磁铁矿和硫化物开始大量沉淀,从而形成磁铁矿床。

2、构造决定矿床的赋存地段

由于地幔能量的重新分布和地壳的不断运动,造就了规模较大的断层,褶皱等构造带,而在形成这些构造带的同时,产生了大量的破碎带和裂隙,为下部岩浆岩体的上冲侵入具备了必要的条件。而在侵入体侵入的同时,又产生了大量的次生破碎带和裂隙,为含矿溶液的运移和成矿化学组分的沉淀创造了必不可少的条件,从而导致含矿溶液的赋存成矿。

另外,岩浆岩在上升接近地表时,由于温度急剧下降,导致上部围岩的温度变化较大,大面积的破碎,最后形成上阔大口,接触带产状在上下几乎翻转,而Fe3O4熔点高,比重大,所以磁铁矿在地表上部一般紧贴接触带,在下部一般远离接触带。

总之,要想在矽卡岩铁矿床的地质找矿上取得一定的成绩,就必须了解该类铁矿的成矿机理和成矿规律,弄清矽卡岩铁矿的赋存地段也就显得非常必要。(源于:地质杂记)





2024全国自然资源工作会议要求加强矿产资源绿色勘查和低碳开发返回列表2023年中国出口了9030万吨钢铁产品
友情链接: